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THE COUETTE FLOW BETWEEN TWO PARALLEL PLATES
AS A FUNCTION OF THE KWUDSEN NUMBER

I. INTRODUCTION

In a previcus report! a formal solution was obtained for the heat
transport through a gas between two parallel piates as a function of the Knudsen
numbher d/A (d is the distance between the plates, A is the mean free path of the
molecules). The starting point was the linearized Boltzmann eguation, since it
was assumed that the magnitude of the disturbance from equilibrium, measured by
the retio AT/T (AT - temperature difference between the plates, T = average tem-
perature), was small,

In the following, the same method will be applied to the problem of the
Couette flow of a gas between two parallel plates as a function of the Knudsen
number d/x. We will again assumc that the Mach number which in this case is the
ratic of the average flow velocity to the mean molecular velocity, is small, so

that the disturbance of the equilibrium due to the moving plate is also small in
this case.

Since the method and the general features of the solution are quite
similar to those of the heat-transvort problem, only an outline of the calcula-
tions will be presented in sections IT, III, and IV. In section V some diver-
gence difficulties will be discussed which also occur in the heat-transport
problem, and which are due to the paraliel-plate geomctiy.

ig, 8, Wang Chang and G, E. Uhlenbeck, “ihe Heat Transport between Two Parallel
Plates as Functions of the Knudsen Number", Univ. of Mich., Eng. Res. Insti.,
Project MQ99, Sept., 1953.

e i 2 et - e



et e s

oy T RO £ B G AR X

T —

II. FORMULATION OF THE PROBLEM

We take the y-z plane halfwey between the plates., The upper plate,
situated at x = d/2, is stationary, while the lower plate at x = d/2 is moving
in the z direction with a velocity w (measured in units of dm?QkT). The velocity,
w, is assumed to be much smaller than unity so that terms of the order w2 and
higher will be neglected. The notation of the previous report wili be used.
The distribution function is written as

§= %o[r%ﬁ(f,x,wjj

It is convenient to take fnr the zeroth approximaticn distribution function

B = o z—ﬁ—‘)

2

N KN
where C = ¢ - w/Z, i is the equilibrium-number density, and T the equilibrium
temperature, which are &ll constants. The Boltzmann equation 1s again

Cedh = T (R) W)

where J is8 the collisior operator.

To formulate the boundary conditions we introduce the distributisn
functions for the mclecules going up and Gown, i.e., t* and f£~, and the corre-
sponding disturbances h* and n~. In terms of the h's, the boundary conditions
are

2
i
’

%*(—%—):: o((5++\!(‘3) +(\—C\'J f\— (—’E’"Lx) x>0 (2&)

b3
3
f2

ﬁ,‘(+%)= o(([s——wca)+(t;o()%* (+%‘_»)-C,<) X< 0 (1b)

where ¢ is the accommcdution coefficient and the constants B and B~ are to be
determined by the conditions
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expressing the conditions that the number of molecules per unit area between the
plates 1s given {equai to nd) end that in the steady state there is nc net flow
in the x-direction. Up to terms llnear in w we have the symietiry condition

f'\:t (Cx)’X.) = - .\\; (_ Cx,-X) ) ((})

and consequently

%(\C,_ X)= - l\‘x (-ox, - x)

With the symmetry condition (4), Eq. (3a) is automatically satisfied, and thc
boundary conditions (2a) and (2t} ars squivalent with

T=-B = B,

Thus cur problem reduces to the solution of the integral differential
equation (1), subjected to the boundary condition (2a) and the auxiliary condi-
tions (3b) and (4). The physical quantities we are interested in &re the drsg
on the upper plate, the velocity distribution as a function of x, and the
velocity jumps &t the plates.

IIT. GENERAL SOLUTION

At first glance, this problem seems 1¢ be more complicated than the
provlem of the heat conduction because of the lack of axial symmetry around the

x-axis in the present prcbhlem. It will be seen, however, that this is not a real

difficulty. Tt 1is true, though, that in the developmeni 1n elgenfunctions, we
rust now use the spherical havmonics instead of the Legendre polynomials used in
Ref. (1). We write

;)
1 vA \ LR
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-‘ r
vhere 8 is the angle between the velocity C and the x-axis ard @
angle measured from the y-axis, and develop h acvording to

h=2

~ A vy

2w (x) \})fi "ny

Because of the reality of h one must have a,. , = a;lm’ ¥From the
pioblem with regard to the y direction, it follows that h must be
of cy, which has as & consequence that the a,.,. for odd m must be
The first few of the developmerit coefficlents aryy are related to
physical interest. For instance, the density and temperature are

N o (x
mxye m |14 Bgee ]

o - 2 _Oheo (x
TOo= T -3 —)Tr”"‘\fw I

and the physical guantities (chearing stress, average velocity, a

This implies that

QA ozo a a

v020_ o0 v 3. _Gooco cmfw\'
Neaie 4+ M\00 + Nooo

®yop = CoMak,

Ref. (1)

all in the z-direction) in which we are especially interested are given by
’h&T— 2 Qea (¢
- 2] o
\ny .“_3/1 30 Neay , )
> S X VR 6
z’ 2 ‘\“‘—3/)_ N‘o“ B ( b)
! f Ay 5 [0 PN ]
= ,hk \ 2{\1 - L2 Ry V7o
C%Z/ i L l. Nuy 2 Nan . ‘o)
From the conservation laws it follows thnot C,s Pxx» Pxys Pyz. end 9y 8re com-

stants. We will reqpire that cx = O (see eqg. (3b)); Pyy is zero by symmetry.

*There are some misprints in the corresponding formulas in the previous repe:t,

is the ezimuthal

(s)

symmetry of the
an even function
pure imaginery
guantities with
found from

nd heat f{lux,




Introducing the development of h into the Boltzmann equation, we find
that our problem reduces to the solution of an infinite set of homogeneous linear
differential equations:

’§ %&n == '“\771'4.\' Qo [L“é;*’f':c.m, ".f’v’k"m'} Y2

:: with the boundary conditions:

S s

Z Qty\q,‘ (- %—) = 5 d "J)erw\ (B WC}) it2 J\‘iv\ Cx

f 3 (-a) oo, (- 2) (- = =
i e ' -"9\*.\.

PR T T P

Finally, 84, = O, and from the symretry property eq. () it follows that

even odd
8ppm = in x accerding as £ - m 15{
lodd

even,
The square bracket in eq. (7) is different from zero only when m = m', and
! - 1" is 0odd., Thus coefficients with different values of m are not coupled.

Since forim|>1 the integral in the boundary condition (8) is zero, it
is clear that the equations for By m with |m|>l are completely homogeneous, so
thai the only solutior will be zero. This 1e nleco the case for m = O, because
in eq. (8) the quantity B s alsc an unknown and the inhomogeneous part is only
the term containing wC,. This term is also zero for :a = O. Hence cne may
conclude®

a'vl'm=°, form#il .

We use the same procedure as was employed in Ref. (1). One must
distinguish between even and odd values of £. Eliminating 2.(2p + 1)1 ONe ob=
tains an infinite set of secaad-order homogeneous differential equations for
8y(21)1, which, with the use of the symmetry conditions, has as soluticns:

(0) L") ‘? . .
B atei = Benoq & Z: by,gy oMV MY, a5

*This is in contrast to the cases of heat conduction. It is also physically
evident that a temperature gradient will produce a change cf the density n near
| the plece, while this is not the case for a velocity gradient.

L e =
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where ihe py's are the positive and nonzero solutions of the secular determinant
L < ~ . - y % .

Az | P See Sy —\{i’ [._é; q’":&l s W/aler y ] L-Cl;‘t)\r'lwﬂl , “"*”z’l’l.] =ie,

and where in the sets of the br nz)1 °ne set can be taken as arbitrary, for which
we choose bo{g)x and b{iz’l . Furthermore, from the comstancy of p,. it follows that
bo(gl = O for all {1,

The coefficients ar(z, + 1)1 ere now completely cCetermined and one finds

R n 5 A » {2)]
Sty & "xﬁ, [Lc,‘%)»—z"\ﬂ v, Ty ] b‘."zﬂ"\
\ . < _‘__ & '\i) »
* Zu' v SNIL\ MF"%Y[,‘Q\, [ Cx {\P“lo\ﬂ 1, “‘Pr'al'\] b’y Gio)

(0) (1)

The remaining unknown constants bgs) &nd b;5; have to be determined
from the boundary conditions. For this, one needs first the a.';(z 1)1, for which
one otitains:

1 = e (e
E w%\' (£ 5wsys ARSI ) by, Cu)
' 7t O
*\"Zo\’ S (LS Sy coh M@LX:-}: suuLmP;xan,; vty ) b,

where

-*
Tealn, valy = I_‘é;\\)\-li\ B—aﬁaﬁx— )(q)\"tl'l]o

Putting eq. (11) in the boundsry conditions, one is led to the set of inhomogene-
ous linear equations

e Ot GRS = [ T B, 0 )02
. G12)
= ] 4 : W) w
12 [Gresh mpd - k s\Lngfé_zl T vats By ) B
where the known constant matrices ® are defined by
byass ™ Brakirs osy baw
l’\:‘!zi\ = B\i—)mﬁ\; ‘2 \)\l‘i. .

<
1%
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In the same sense as in Ref. {1), ea. {12) 1s a set of inhomogeneous linear
equations with the same number of equations as that of unknowm Thus the prob-
len is formally solved.

The complete solution involves infinite determinants. We are, as yet,

unable to discuss the convergence of these determinants nor the convergence of
the "breaking off" processes which we will use as in Ref. (1).

Iv. THE MAXWELL MOLECULES

We will use the same "successive approximation" method zs in Ref. (1).
Furthermore, we will restrict ourselves to the Maxwell molecules so that

(‘) T(‘\)r&‘h\) = >\"'l '\\?YQJ\N\.

'S " »
) Lé; “'\)*9.'“\ 5 \)f)v'('m} = "’U X‘i‘: e 'é,‘ N\)*QM\ \\)‘!‘"\"W\ >
and
i -«
3) [C‘x“‘\)ﬂ\*"\ . "*’ot\] = C unless both r and ! are zero which has

{c
as a consequence that all b »51), ara zero except bga:.

T'\c

Since we do not expect to get anything from the zeroth approximation, we start
with the first approximation,

A, First Approximation

£s ir the heat-conduction and sound-propagation® problems y we will use
in the first approximation the eigenfunctions for which 2r + £ £ 3, and £<3,
since only the ¥'s with m = 1 enter the probvlem, we therefors nced iu (nke oaly
Yo11, V111, 8nd Vo2;. We know that

©
802y = const. = boo;. . (3a)

20, S. Wang Chang and $. E. Uhlenbeck, "On the Propagation of Sound in Monatomic
Gases”, Univ. of Mich,, Eng. Res. Inst., Pro}. M$99, Oct. 1G52.
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The other two a's sre

2
Qo = '“b“-\ 2 [—\G \\.,o\\ > '-"‘1’02.\ ] 5 (‘3&’)
i »*
G = ’h\-’or\ % L-C‘; “‘\T‘\\\ ) r0‘;01.\ ] . C\?..C.)

Since p = O in this case, the boundary condition (12) reduces to

- - A‘d (4] & -+ (O)
\A) S o2y ~ —ZR ‘Dol\ o= -i_ _ro'l\ , 0\ bbL\
where
- x 1 9 € L T QR+ ) Rer-3)!
_ A B AL l'.JI_. LS y
S‘.’_k\ d Sdce_ “‘*)er\C? 2 = ) 2 N"IQ\ = 2

Using the values of S and T’as glven in tables in Appendix II, one finds

(2 . by |
bous = 7 AT Mo W F TR O

24 3 o

— - o
where \= C“Alikji) . Using egs. (6) and (13), one obtains the following
resulls:

Py A S i ) ! (14
s K
— _owl . \

% ll\ LR 150N ] (14b)

and

- _ S WA - |
Yo EmT G4
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wrere w ig still in units ¥ 2-1‘,7m; Therefore the velocity slip at the upper
plate x = 4/2 is

W= BT O \
L T3 3 o0, X BVT )

™ 3 3 .

(CB) v d T AW =
2.
For small A/d end @ = 1, this is in agreement with the result of Maxwell.

B. Second Approximation (Zr + ! 4L and < k)

The eigenfunctions entering the problem are Vo1, ¥oz1, ¥1i11» ¥0ai» and
¥121. The ¥'s with odd values of [ - m are ¥oz1 and ¥i;»3. The only nonzero
value of p is

ve el AT

The constants to be determined by the boundary conditions are bd®) and bfgl.
Equations (12) become a set of two equations:

_ 2-¢ + (% “* .
WS, T (\ 29 _]%-—Eu;ou) b0:»\ - J‘;—\:u;\a_\ ""“‘J" ’“E bm

and

'
<

* . N ~ 13
r = =14 7 NG ISt 8 "”@__ o B "‘_%
b Xt FY _r"‘-\ > 01 ‘OM-‘ +L P ¢ CVJ‘ -%T\l\i 121 SV'VL } b"-l .

Solving these equations, one then can calculate the quantit

(7]

3

ies cf physical in-
terest. It turns out that in all approximations the drag, the velocity distribu-
tion, and the velocity jump have the form

— 4W i
:ly\)(’\"..___
P)‘X 3 a +1-o( RFT A ,
AT TR n
o 4 J E: suhmp;
E;:!ii\-%é_ 2w BT el ¢s)
5 = RN %*z-«&_ﬁ_ 2 -« 3F A -',
X 5 B T 3 R
Mo B e
cwe Wik 3 B T RE @
R W . B .\ ¥ W
)\ pa. 3 B 9
9
SR g T T 3 «“’}‘.’-‘if‘a" i i
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where the sum is over all the roots pj, and 5; = sinh (npid/2), The functions

A, B, and Ei ere a1l functions of K = d/A.

In this epproximaticn, one finds

A= 4'0{:7‘#1:
_ a—o \2
B - 2R *%\&t
o
k= aaé'o—'l_'

b

where t = tanh (npd/2), ¢ = cosh (npd/2).

C. Third Approximation (2r + £ £ 5, and ! < 5)

The eigenfunctions to be taken in this case are ¥oi1, Voz1» V111, Yoa1,
Vip1, Vos1, V211, 804 ¥1a;. There are four ¥'s with odd values of £ - m. Hence
there are two pairs of p differing from zero. They are
; = 0.7151 A, and pp = 1.342 A% ,
where Ab = Ag Yx/kT. We find, further,
®
boey = -0.2456 b3, , b2, = 2.539 b2,

Solving the set of three equations for the boundary conditions, one finds then,

2% (0.6318 T, 4+ 053%t,) + 0-33924,¢,

oo (2o 2=/
A= ( 2.0() T (053671 4 0‘50671:'-)* o.2714 .t
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L. TFourth Approximstion {(2r + £ ¢ 6, and £ < 6)
We proceed as before, with the four values of p's and the curresponding
ratios of b (1)) MmH). oiven in the following table.
i 1 2 z i
e 0.L60bAS 1.065A% 1.261A% 1.610A%
v ) A (1)
9041/b121 1l ., 1 1
—— {- 0.713) == ( 5.525) —— (3.322 —— (@
vdd o & 5 5 y
B/ | 2128 | 2 (-6 | 35 @) 2 (8.442)
i) o B, JE i 1 2 16
' O (1.362 T 77 (0.320) 337 (<5.382) VT 35 (Ze.
1«/1_1( 362) L h\/ll 13 (32.51)
Taking a@ = 1 to simplify the computation we arrived at the following results:
A= 23T +263b +273t,+ 250t + 248, + Ayt 270ttt
T 23ttty T 2800 v 2.8 T+ el b b+ ettt
¥ 303ttt r 280ttt + 294 bt v B0 Rty
B o= 2a3€+ 249t t 2374, % 2494+ 233t + adbhit, b 2sY vt
Fadatder 247 TN A3t b 243 by T asu bt b 4
2 adothE 24V ¢ aditt 240
3 808
E\’-—c‘ 1 ( c.s62 + 0457t ¥ o.Sonc3 + o.wg-t:‘,f 4 o.$s3t‘t3+ 0.4}5871':,'{"4?-
+ o g2ttt o433 ttty)
E’_:_\st_(?;zflﬁ-il\éfﬁ 3.23%E, + 208ty + 3.btit, + 307i b+
* 303 ptytat 3025t bat ) ;

11
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Es = -9-'%2—3- (5.805 + 0.5t + 0.6b%%,+ 0 833+%, + 0.46THt, + 05Tt ERt

T 0Jootky ¥ 0.45F tbt, )

E,= i-‘-’i—g’- (45034 26045, % 2455 €% 2JoSt, + 149 HE, + 2694 Lty
2603k + 2589 bt

L3

For tue discussicn of these resulis we have plotted three sets of
curves. Figure 1 contajns a set of four curves for pxz/(pxz) Knudsen 288inst
the Knudser numbes, d/h. Curve I is for the Stokes-Navier approximation, Curves
II, III, and IV are results from our first, second, and third approximations
respectively. We have nst plotted the curve for the fourth approximation because
we 40 not expect anything new and the numerical computation is very laborious.
The straight line on the left is the initial slope for the exact solution, All
the curves from the different approximations have the same value {unity) for
K = 0, and for K equal ‘v infinity they all approach the same limit, zerc. The
initigl clope for the four approximations arc listed below,

Initial zlope

Exact -1.242
First approximation -0.k23
Second " -0.458
Third " -0.534
Fourth " -0.598

Figure 2 consists of a set of three curves for the first tiwee approxi-
mations for the velocity slip at the upprer plate as = function of K., The initial
slome is given by:

Initial slope

First approximstion =0.423
Second L -0.h9k
Third u -0.6%h
Fourth L -0.755

We have drawn Fig. 3 to show the velocity distributions as funciions
of x for K = 10. Since the velocity distributions for the differeni approxi-
metions deviate very s8lightly from the strajught-line distrivution of the first

12
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approximation we have drewn instead of T, against x, the curves Ry - R, where
R=1- 2Ez(x)/w and R, is the value of R from the first approximation, namely,

R = ax \ N
) 4N .
d a1 3

As in the case of heat conduction, the toundary effect is shown by the sharp rise
of the curve near the wall.

V. THE APFROACH TO THE KNUDSEN LIMIT; A DIVERGENCE DIFFICULTY

In Ref. (1) we pointed out that the behavior of the exact solution for
the heat-conduction problem is for iarge K quite different from the behevior at
emall Knudsen number. The approach to the Clausive sae limit (K>>1) is compli-
cated by the cccurrence of the hyperbolic functions, so that a development in
inverse powers of K is not possible. We see from section ITITI that the same is true
for the Cnuette flow. On the other hand, it seems that the approach to the
Knudsen gas regime (K<) is quite regular so that & development of all reievant
paysical quantities in powers of X ghould be possible.

In fact, in Ref. (1) we gave the first two terms in such a development
for the heet fiux. Analogous results can be found for the drag*, 1In the zeroth
approximation one finds

?&i% = mkT—2

a-K Ny

1|2

(b)

-

with w still in units of\l2kT7m. In the first spproximation

» (©) & =4

b = by ood o LGRS, S 5] 0

For a = 1 this reduces to the expression given in Ref. (3).3 There the square

hracket which is always negative has been evaluated for elastic spheres and
Maxwell molecules. The results sre as follows.

*These results can be found either by the method descrited in Chep. III of
Ref. {1} or from the general solution.

2C. S. Weng and G. E. Uhlenbeck, "Transport Phenomens in Very Dilute Geses",
CM 579, UMH-3-F, Univ. cf Mich., Fng. Res. Inst., Proj. M6OL-6, Fov. 13, 19%9.
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For elastic spheres of dlameier g,
V)

e
xy . _Nindwe \
-v—(éf-— —-4.?'——— (s+ 26V2) 5 (\8"5&)
By
For Maxwell moleculeg,
_‘\é{(_: md K ‘T) AF(p Y3 L i-enb
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In this case the resuli obtained from tie general solution is express=d in the
eigenvalues A\, of the collision operator in the form

W)

Byt e Bl

L0 R'°( U5 ~\ /19\4 4 -k
\xj.

The summation can be carried out (for details see Appendix 1) and confirms eq.

(18b). The integral was eveluat:d numerically in Ref. {3}, with the result

1%

’,' (9)

|w

N N

W) ¢
- S0 N A
—E‘z_ o (1.242)
XY
woere % '= mAGJET. Thus for o = 1, the exact value of the initial slope in
Fig. 1 is -1.242,

A Aifficulty eppears when one wants to calculate the second approxi-
mation of the drag. cr when one wants to find analogous expansions for the
average velocity distridution or for the velociiy juxp at the plates. Formally,
one finds

O] ., ) . . J
‘) 3 "’x (1_ ) fh;\ [ ‘é; %\3‘) C)xT(Cz A\(T\C)() , Cgb\an, CxJ R (zo/\
and iz the first epproximation,

— C

3 - o T3fz. Loy o 5“
The bracket expreseions are both divergent integrals because of the factor .L/c.{.
The same difficuity occurs in n the heat-conduction oblem  although we did not
notice it at that tizme. Tne second approximation to the nhsat flux given in
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Ref. (1), p. 8, eqa. {19) is also divergent, and the temperature distribution in
the first approximastion for which one can derive the formal exvpresslon

S, [ (e~ %—_)-'c— , (c™=2) A«&»\ C)&J

is divergent Just as Ez

Tne divergence of ail these integrals is of a logarithmic nature and
is always duc to the factor 1/c_. The origin of these divergence difficulties
is therefore clearly the pa.ra.llgl-plate geometry. Molecuwicl which are emitted
rearly parallel to a plate will have to transvevse & very long path before
reeching the cther piate, so that the Knudsen approximation will not be valid
for thees molecules. Or one can say, the average Knudsen numier for melecules
emitted in all directioms 4= logarithmically infinite even if d/A<<l. We have
found that by taking two concentric spheres {(radil a and b) instead of two
parallel plates all divergences disappear. For d = a - b<<t/2)(a + b) =R,
quantities such as the temperature distrivution will in first approximation in
K = d/n contein terms proporticsal to ln (R/d), which blows up for the parallel

plate geometry.

One may conclude, therefore, that these divergence aifficulties will
not sffect any real physical situation, and that the behavior of the sclutions
pear the Knudsen limit can still be considered to be reguler, so that a develop-
ment in powers of K is possible.
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APPENDIX I

DERIVATION OF EQUATION (18b) FROM EQUATION (19)

In terms of the eigenvalues A, ! of the collision operator, the first
order correction to the pressure Py, in the inudsen limit is given by

W)

\ I3 " ) 3 - L
—?—-X— - - i - o Z >\r;9\ I\‘TS\("H) &\\*%)L(Q*T"I) ‘.] (13)
G T vt (teva gy

The expression for Apoj is

— T
- J I 2va4 3 R
)\‘.ﬂ\ = IT\\{.T, "}O 40 3wv 2 ){ & ’%—_P,Q(Cw -g_) +
+ Al\\"‘"“"%? &) = (1 $ro800) }

In the braces, we see that the second, third, and fcurth terms sre obtainzble
from the first term by replacing 8 by x - 8 , 0, and «/2. Thus, subatituting
eq. (2k) into eq. (23), we see that we need only tc calculate the sum

WD) LB P wensly ),

v, & e ¥! (\IQ‘\'*"*J{)P
P_tting r 4 1 = 4_, we have
L 3L 1
) Y 0 28+ 3)
5= 2 G- e Z wn) L= Pl
» R+ g

The last sum can be done with the help of the relation

! (m+ )
t-2) ¢ (mage ) Y

(xm+1) e = Z( (%Q-H)-P,_Q (evax)
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leeding to

and thus to eq. (i8b).
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TABLE USED FOR NUMERICAL COMPUTATIONS

»

{IGAN

H i A- I N
1. Table of %igenvalues. (A = Ao T ! 752. ~ R = 0.6546)
z 0 1 2 3 | N
Q *
0 0 0 = .2 _ T as(y . BR
AL 5 A 5 Ae(1 )
Ay TA3 L, . 2R, ar(r . LR
1 Y —— = ?-2\1 ey 285(2 58
Al 3A% o
2 == s -5 A2(1 - %)
2, Normslization constants:
x () (!
Nion, = X
WM e ey
Im
N n 21 21 51 51
T \\ ‘
3 2 2 a 2 22 2 ot .3
0 x 2 —x 2 — 5 2 ——— = 2
9 hs 3-5 .7 3 .52'7'
2 3 2° a 2 3 2> 3
1 -5 3 = 2 = 22 3 x 2
2 37 35 345 .7.11
g 2= % 2
2 = 22| 2.7
= 4
> 3.
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